Introduction to MF-SIM

In the field of fluorescence biological imaging, general interest is more and more turned towards video-rate 3D super-resolution microscopy. SIM is a good candidate for fast acquisition but until now, the acquisition of focal stacks was always performed sequentially. In this project, we aim to combine the fast-SIM set-up with a multi-focus detection scheme [4] and thus build a so-called “multi-focus structured illumination microscope” (MF-SIM).

MF-SIM set-up

 

Sketch of the MF-SIM set-up

The excitation arm is a clone of the fast-SIM system existing in the group [5, 6], with one major difference: this set-up is going to be a 3-beam SIM. The detection arm follows a multi-focus detection scheme, the important components being the multi-focus grating (MFG) which produces the desired multi-focus effect, the chromatic correction grating (CCG) and the multi-faceted prism which together correct for chromatic dispersion in the emitted fluorescence light [4].

 

Litterature MF-SIM

[4] Abrahamsson, S.; et al.

Fast multicolor 3D imaging using aberration-corrected multifocus microscopy
Nature Methods, Nature Publishing Group, 2013, 10, 60-63

[5] Förster, R.; et al.

Simple structured illumination microscope setup with high acquisition speed by using a spatial light modulator

Optics Express, 2014, 22 (17), 20663-20677

[6] Lu-Walther, H.; et al.

FastSIM: A practical implementation of fast structured illumination microscopy

Methods and Applications in Fluorescence, 20153, 014001

Skip to toolbar