Concrete SeparableFunctions

They all possess a similar interface and exist in three variants:

  • (recommended:) function_sep: returns a broadcasted object, which is an operator combined with a calculated iterable of one-dimensional vectors (created using calculate_separables). This looks a lot like an array in terms of usage, yet it consumes far less memory and saves time when used in combination with other arrays. It also works with CuArray datatypes (provide the Array type as a first argument). Note that reduce operations about specific dimensions do not work directly on these objects but (currently) you need to call collect on it before applying for examplesum(collect(my_sep_object), dims=2).
  • function_col: collects data. This leads to an allocation of the result array, but is usually still faster then calculating the N-dimensional function directly at each position. Internally, it calls the function_sep mechanism described below, which is for most applications preferable.
  • function_lz: a lazy version based on LazyArrays. This only allocates the one-dimensional memory for the values along each dimension. A lazy array can even avoid allocation if for example a sum over the array is performed. The array can also be used in broadcasting operations. However, currently it does not work using CUDA.jl-style CuArray objects. This version is not recommended and not exported by the module.
SeparableFunctions.gaussian_sepFunction
gaussian_sep([::Type{TA},] sz::NTuple{N, Int}; sigma=ones(eltype(TA),N), pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}

creates a multidimensional Gaussian by exployting separability speeding up the calculation.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col version yields a collected array, the _lz version a LazyArray and the _sep version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...) syntax with res being the result of the _sep call.

Arguments

  • TA: optionally an array type can be supplied. The default is Array{Float32}

  • sz: size of the result array

  • pos: position of the gaussian in relationship to the center defined by offset

  • offset: center position of the array

  • sigma: tuple of standard-deviation along each dimensional

returns an iterable with the one-dimensional arrays, which can be used via .*(res...) wiht res being the result of calling this function.

source
SeparableFunctions.gaussian_colFunction
gaussian_col([::Type{TA},] sz::NTuple{N, Int}; sigma=ones(eltype(TA),N), pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}

creates a multidimensional Gaussian by exployting separability speeding up the calculation.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col version yields a collected array, the _lz version a LazyArray and the _sep version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...) syntax with res being the result of the _sep call.

Arguments

  • TA: optionally an array type can be supplied. The default is Array{Float32}

  • sz: size of the result array

  • pos: position of the gaussian in relationship to the center defined by offset

  • offset: center position of the array

  • sigma: tuple of standard-deviation along each dimensional

returns the collected N-dimensional array.

#Example

julia> pos = (1.1, 0.2); sigma = (0.5, 1.0);
julia> my_gaussian = gaussian_col((6,5); sigma=sigma, pos=pos)
6×5 Matrix{Float32}:
    2.22857f-16  1.21991f-15  2.4566f-15   1.81989f-15  4.95978f-16
    3.99823f-10  2.18861f-9   4.40732f-9   3.26502f-9   8.89822f-10
    1.3138f-5    7.19168f-5   0.000144823  0.000107287  2.92392f-5
    0.00790705   0.0432828    0.0871608    0.0645703    0.0175975
    0.0871608    0.477114     0.960789     0.71177      0.19398
    0.0175975    0.0963276    0.19398      0.143704     0.0391639
source
SeparableFunctions.normal_sepFunction
normal_sep([::Type{TA},] sz::NTuple{N, Int}; sigma=ones(eltype(TA),N), pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}

creates a multidimensional normalized Gaussian by exployting separability speeding up the calculation. The integral of the multidimensional array, if it where infinite, is normalized to one.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col version yields a collected array, the _lz version a LazyArray and the _sep version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...) syntax with res being the result of the _sep call.

Arguments

  • TA: optionally an array type can be supplied. The default is Array{Float32}

  • sz: size of the result array

  • pos: position of the gaussian in relationship to the center defined by offset

  • offset: center position of the array

  • sigma: tuple of standard-deviation along each dimensional

returns an iterable with the one-dimensional arrays, which can be used via .*(res...) wiht res being the result of calling this function.

source
SeparableFunctions.normal_colFunction
normal_col([::Type{TA},] sz::NTuple{N, Int}; sigma=ones(eltype(TA),N), pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}

creates a multidimensional normalized Gaussian by exployting separability speeding up the calculation. The integral of the multidimensional array, if it where infinite, is normalized to one.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col version yields a collected array, the _lz version a LazyArray and the _sep version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...) syntax with res being the result of the _sep call.

Arguments

  • TA: optionally an array type can be supplied. The default is Array{Float32}

  • sz: size of the result array

  • pos: position of the gaussian in relationship to the center defined by offset

  • offset: center position of the array

  • sigma: tuple of standard-deviation along each dimensional

returns the collected N-dimensional array. #Example

julia> pos = (1.1, 0.2); sigma = (0.5, 1.0);
julia> my_normal = normal_col((6,5); sigma=sigma, pos=pos)
6×5 Matrix{Float32}:
    7.09377f-17  3.88309f-16  7.81959f-16  5.79289f-16  1.57875f-16
    1.27268f-10  6.96656f-10  1.40289f-9   1.03929f-9   2.83239f-10
    4.18196f-6   2.28918f-5   4.60985f-5   3.41506f-5   9.30713f-6
    0.00251689   0.0137773    0.0277442    0.0205534    0.00560145
    0.0277442    0.15187      0.305829     0.226564     0.0617458
    0.00560145   0.030662     0.0617458    0.0457424    0.0124663
source
SeparableFunctions.ramp_sepFunction
ramp_sep([::Type{TA},] sz::NTuple{N, Int}; slope, pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}

creates an N-dimensional ramp along the gradient-direction defined by slope. Note that this disagrees with the nomenclature of the ramp-function defined in IndexFunArrays.jl.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col version yields a collected array, the _lz version a LazyArray and the _sep version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...) syntax with res being the result of the _sep call.

Arguments

  • TA: optionally an array type can be supplied. The default is Array{Float32}

  • sz: size of the result array

  • pos: position of the gaussian in relationship to the center defined by offset

  • offset: center position of the array

  • slope: a vector defining the N-dimensional gradient of the ramp.

returns an iterable with the one-dimensional arrays, which can be used via .*(res...) wiht res being the result of calling this function.

source
SeparableFunctions.ramp_colFunction
ramp_col([::Type{TA},] sz::NTuple{N, Int}; slope, pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}

creates an N-dimensional ramp along the gradient-direction defined by slope. Note that this disagrees with the nomenclature of the ramp-function defined in IndexFunArrays.jl.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col version yields a collected array, the _lz version a LazyArray and the _sep version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...) syntax with res being the result of the _sep call.

Arguments

  • TA: optionally an array type can be supplied. The default is Array{Float32}

  • sz: size of the result array

  • pos: position of the gaussian in relationship to the center defined by offset

  • offset: center position of the array

  • slope: a vector defining the N-dimensional gradient of the ramp.

returns the collected N-dimensional array. #Example julia> myramp = rampcol((6,5); slope=(0.0,0.5), pos=pos) 6×5 Matrix{Float32}: -1.1 -0.6 -0.1 0.4 0.9 -1.1 -0.6 -0.1 0.4 0.9 -1.1 -0.6 -0.1 0.4 0.9 -1.1 -0.6 -0.1 0.4 0.9 -1.1 -0.6 -0.1 0.4 0.9 -1.1 -0.6 -0.1 0.4 0.9 ```

source
SeparableFunctions.rr2_sepFunction
rr2_sep([::Type{TA},] sz::NTuple{N, Int}; pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}

yields the absolute square of the distance to the zero-position.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col version yields a collected array, the _lz version a LazyArray and the _sep version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...) syntax with res being the result of the _sep call.

Arguments

  • TA: optionally an array type can be supplied. The default is Array{Float32}

  • sz: size of the result array

  • pos: position of the gaussian in relationship to the center defined by offset

  • offset: center position of the array

returns an iterable with the one-dimensional arrays, which can be used via .+(res...) wiht res being the result of calling this function.

source
SeparableFunctions.rr2_colFunction
rr2_col([::Type{TA},] sz::NTuple{N, Int}; pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}

yields the absolute square of the distance to the zero-position.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col version yields a collected array, the _lz version a LazyArray and the _sep version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...) syntax with res being the result of the _sep call.

Arguments

  • TA: optionally an array type can be supplied. The default is Array{Float32}

  • sz: size of the result array

  • pos: position of the gaussian in relationship to the center defined by offset

  • offset: center position of the array

returns the collected N-dimensional array. #Example

julia> pos = (1.1, 0.2); 
julia> my_rr2 = rr2_col((6,5); pos=pos)
6×5 Matrix{Float32}:
    21.65  18.25  16.85  17.45  20.05
    14.45  11.05   9.65  10.25  12.85
    9.25   5.85   4.45   5.05   7.65
    6.05   2.65   1.25   1.85   4.45
    4.85   1.45   0.05   0.65   3.25
    5.65   2.25   0.85   1.45   4.05
source
SeparableFunctions.box_sepFunction

box_sep([::Type{TA},] sz::NTuple{N, Int}; boxsize=sz./2, pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}

creates a Boolean box, being True inside and False outside. The side-length of the box can be defined via the argument boxsize.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col version yields a collected array, the _lz version a LazyArray and the _sep version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...) syntax with res being the result of the _sep call.

Arguments

  • TA: optionally an array type can be supplied. The default is Array{Float32}

  • sz: size of the result array

  • pos: position of the gaussian in relationship to the center defined by offset

  • offset: center position of the array

  • boxsize: a vector defining each sidelength of the box.

returns an iterable with the one-dimensional arrays, which can be used via .*(res...) wiht res being the result of calling this function.

source
SeparableFunctions.box_colFunction
box_col([::Type{TA},] sz::NTuple{N, Int}; boxsize=sz./2, pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}

creates a Boolean box, being True inside and False outside. The side-length of the box can be defined via the argument boxsize.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col version yields a collected array, the _lz version a LazyArray and the _sep version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...) syntax with res being the result of the _sep call.

Arguments

  • TA: optionally an array type can be supplied. The default is Array{Float32}

  • sz: size of the result array

  • pos: position of the gaussian in relationship to the center defined by offset

  • offset: center position of the array

  • boxsize: a vector defining each sidelength of the box.

returns the collected N-dimensional array. #Example

julia> pos = (1.1, 0.2); 
julia> my_box = box_col((6,5); pos=pos)
6×5 BitMatrix:
 0  0  0  0  0
 0  0  0  0  0
 0  0  0  0  0
 0  1  1  1  0
 0  1  1  1  0
 0  1  1  1  0
source
SeparableFunctions.sinc_sepFunction

sinc_sep([::Type{TA},] sz::NTuple{N, Int}; pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}

yields the outer product of sinc functions. This corresponds to the diffraction pattern of a rectangular aperture. Note that it is not circularly symmetric.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col version yields a collected array, the _lz version a LazyArray and the _sep version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...) syntax with res being the result of the _sep call.

Arguments

  • TA: optionally an array type can be supplied. The default is Array{Float32}

  • sz: size of the result array

  • pos: position of the gaussian in relationship to the center defined by offset

  • offset: center position of the array

returns an iterable with the one-dimensional arrays, which can be used via .*(res...) wiht res being the result of calling this function.

source
SeparableFunctions.sinc_colFunction
sinc_col([::Type{TA},] sz::NTuple{N, Int}; pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}

yields the outer product of sinc functions. This corresponds to the diffraction pattern of a rectangular aperture. Note that it is not circularly symmetric.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col version yields a collected array, the _lz version a LazyArray and the _sep version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...) syntax with res being the result of the _sep call.

Arguments

  • TA: optionally an array type can be supplied. The default is Array{Float32}

  • sz: size of the result array

  • pos: position of the gaussian in relationship to the center defined by offset

  • offset: center position of the array

returns the collected N-dimensional array. #Example

julia> pos = (1.1, 0.2); 
julia> my_sinc = sinc_col((6,5); pos=pos)
6×5 Matrix{Float32}:
  0.0020403   -0.00374056   0.0224433   0.00561083  -0.0024937
 -0.00269847   0.00494719  -0.0296831  -0.00742078   0.00329812
  0.00398345  -0.00730299   0.0438179   0.0109545   -0.00486866
 -0.00760477   0.0139421   -0.0836524  -0.0209131    0.00929472
  0.0836524   -0.153363     0.920177    0.230044    -0.102242
  0.00929472  -0.0170403    0.102242    0.0255605   -0.0113602
source
SeparableFunctions.exp_ikx_sepFunction
exp_ikx_sep([::Type{TA},] sz::NTuple{N, Int}; pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}

yield an exp.(1im .* k .* Δx) function. A scaling of one means that the shift_by argument corresponds to Δx in integer pixels, but the term is in Fourier space. Note that the meaning of scale is different compared to the version in IndexFunArray.jl. Here the default scaling of 1.0 corresponds to the default scaling of ScaFT in IndexFunArrays.jl.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col version yields a collected array, the _lz version a LazyArray and the _sep version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...) syntax with res being the result of the _sep call.

Arguments

  • TA: optionally an array type can be supplied. The default is Array{Float32}

  • sz: size of the result array

  • pos: position of the gaussian in relationship to the center defined by offset

  • offset: center position of the array

  • shift_by: a vector defining the real-space shift that would be caused by this function being multiplied in Fourier-space.

returns an iterable with the one-dimensional arrays, which can be used via .*(res...) wiht res being the result of calling this function.

source
SeparableFunctions.exp_ikx_colFunction
exp_ikx_col([::Type{TA},] sz::NTuple{N, Int}; pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}

yield an exp.(1im .* k .* Δx) function. A scaling of one means that the shift_by argument corresponds to Δx in integer pixels, but the term is in Fourier space. Note that the meaning of scale is different compared to the version in IndexFunArray.jl. Here the default scaling of 1.0 corresponds to the default scaling of ScaFT in IndexFunArrays.jl.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col version yields a collected array, the _lz version a LazyArray and the _sep version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...) syntax with res being the result of the _sep call.

Arguments

  • TA: optionally an array type can be supplied. The default is Array{Float32}

  • sz: size of the result array

  • pos: position of the gaussian in relationship to the center defined by offset

  • offset: center position of the array

  • shift_by: a vector defining the real-space shift that would be caused by this function being multiplied in Fourier-space.

returns the collected N-dimensional array. #Example

julia> pos = (1.1, 0.2); 
julia> my_exp_ikx = exp_ikx_col((6,5); shift_by=(1.0,0.0), pos=pos)
6×5 Matrix{ComplexF32}:
 -0.406737-0.913545im  -0.406737-0.913545im  -0.406737-0.913545im  -0.406737-0.913545im  -0.406737-0.913545im
 -0.994522-0.104528im  -0.994522-0.104528im  -0.994522-0.104528im  -0.994522-0.104528im  -0.994522-0.104528im
 -0.587785+0.809017im  -0.587785+0.809017im  -0.587785+0.809017im  -0.587785+0.809017im  -0.587785+0.809017im
  0.406737+0.913545im   0.406737+0.913545im   0.406737+0.913545im   0.406737+0.913545im   0.406737+0.913545im
  0.994522+0.104528im   0.994522+0.104528im   0.994522+0.104528im   0.994522+0.104528im   0.994522+0.104528im
  0.587785-0.809017im   0.587785-0.809017im   0.587785-0.809017im   0.587785-0.809017im   0.587785-0.809017im
source