Concrete SeparableFunctions
They all possess a similar interface and exist in three variants:
- (recommended:)
function_sep
: returns a broadcasted object, which is an operator combined with a calculated iterable of one-dimensional vectors (created usingcalculate_separables
). This looks a lot like an array in terms of usage, yet it consumes far less memory and saves time when used in combination with other arrays. It also works withCuArray
datatypes (provide the Array type as a first argument). Note that reduce operations about specific dimensions do not work directly on these objects but (currently) you need to callcollect
on it before applying for examplesum(collect(my_sep_object), dims=2)
. function_col
: collects data. This leads to an allocation of the result array, but is usually still faster then calculating the N-dimensional function directly at each position. Internally, it calls thefunction_sep
mechanism described below, which is for most applications preferable.function_lz
: a lazy version based onLazyArrays
. This only allocates the one-dimensional memory for the values along each dimension. A lazy array can even avoid allocation if for example a sum over the array is performed. The array can also be used in broadcasting operations. However, currently it does not work usingCUDA.jl
-styleCuArray
objects. This version is not recommended and not exported by the module.
SeparableFunctions.gaussian_sep
— Functiongaussian_sep([::Type{TA},] sz::NTuple{N, Int}; sigma=ones(eltype(TA),N), pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}
creates a multidimensional Gaussian by exployting separability speeding up the calculation.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col
version yields a collected array, the _lz
version a LazyArray
and the _sep
version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...)
syntax with res
being the result of the _sep
call.
Arguments
TA
: optionally an array type can be supplied. The default is Array{Float32}sz
: size of the result arraypos
: position of the gaussian in relationship to the center defined byoffset
offset
: center position of the array
sigma
: tuple of standard-deviation along each dimensional
returns an iterable with the one-dimensional arrays, which can be used via .*(res...)
wiht res
being the result of calling this function.
SeparableFunctions.gaussian_col
— Functiongaussian_col([::Type{TA},] sz::NTuple{N, Int}; sigma=ones(eltype(TA),N), pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}
creates a multidimensional Gaussian by exployting separability speeding up the calculation.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col
version yields a collected array, the _lz
version a LazyArray
and the _sep
version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...)
syntax with res
being the result of the _sep
call.
Arguments
TA
: optionally an array type can be supplied. The default is Array{Float32}sz
: size of the result arraypos
: position of the gaussian in relationship to the center defined byoffset
offset
: center position of the array
sigma
: tuple of standard-deviation along each dimensional
returns the collected N-dimensional array.
#Example
julia> pos = (1.1, 0.2); sigma = (0.5, 1.0);
julia> my_gaussian = gaussian_col((6,5); sigma=sigma, pos=pos)
6×5 Matrix{Float32}:
2.22857f-16 1.21991f-15 2.4566f-15 1.81989f-15 4.95978f-16
3.99823f-10 2.18861f-9 4.40732f-9 3.26502f-9 8.89822f-10
1.3138f-5 7.19168f-5 0.000144823 0.000107287 2.92392f-5
0.00790705 0.0432828 0.0871608 0.0645703 0.0175975
0.0871608 0.477114 0.960789 0.71177 0.19398
0.0175975 0.0963276 0.19398 0.143704 0.0391639
SeparableFunctions.normal_sep
— Functionnormal_sep([::Type{TA},] sz::NTuple{N, Int}; sigma=ones(eltype(TA),N), pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}
creates a multidimensional normalized Gaussian by exployting separability speeding up the calculation. The integral of the multidimensional array, if it where infinite, is normalized to one.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col
version yields a collected array, the _lz
version a LazyArray
and the _sep
version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...)
syntax with res
being the result of the _sep
call.
Arguments
TA
: optionally an array type can be supplied. The default is Array{Float32}sz
: size of the result arraypos
: position of the gaussian in relationship to the center defined byoffset
offset
: center position of the array
sigma
: tuple of standard-deviation along each dimensional
returns an iterable with the one-dimensional arrays, which can be used via .*(res...)
wiht res
being the result of calling this function.
SeparableFunctions.normal_col
— Functionnormal_col([::Type{TA},] sz::NTuple{N, Int}; sigma=ones(eltype(TA),N), pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}
creates a multidimensional normalized Gaussian by exployting separability speeding up the calculation. The integral of the multidimensional array, if it where infinite, is normalized to one.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col
version yields a collected array, the _lz
version a LazyArray
and the _sep
version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...)
syntax with res
being the result of the _sep
call.
Arguments
TA
: optionally an array type can be supplied. The default is Array{Float32}sz
: size of the result arraypos
: position of the gaussian in relationship to the center defined byoffset
offset
: center position of the array
sigma
: tuple of standard-deviation along each dimensional
returns the collected N-dimensional array. #Example
julia> pos = (1.1, 0.2); sigma = (0.5, 1.0);
julia> my_normal = normal_col((6,5); sigma=sigma, pos=pos)
6×5 Matrix{Float32}:
7.09377f-17 3.88309f-16 7.81959f-16 5.79289f-16 1.57875f-16
1.27268f-10 6.96656f-10 1.40289f-9 1.03929f-9 2.83239f-10
4.18196f-6 2.28918f-5 4.60985f-5 3.41506f-5 9.30713f-6
0.00251689 0.0137773 0.0277442 0.0205534 0.00560145
0.0277442 0.15187 0.305829 0.226564 0.0617458
0.00560145 0.030662 0.0617458 0.0457424 0.0124663
SeparableFunctions.ramp_sep
— Functionramp_sep([::Type{TA},] sz::NTuple{N, Int}; slope, pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}
creates an N-dimensional ramp along the gradient-direction defined by slope
. Note that this disagrees with the nomenclature of the ramp-function defined in IndexFunArrays.jl
.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col
version yields a collected array, the _lz
version a LazyArray
and the _sep
version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...)
syntax with res
being the result of the _sep
call.
Arguments
TA
: optionally an array type can be supplied. The default is Array{Float32}sz
: size of the result arraypos
: position of the gaussian in relationship to the center defined byoffset
offset
: center position of the array
slope
: a vector defining the N-dimensional gradient of the ramp.
returns an iterable with the one-dimensional arrays, which can be used via .*(res...)
wiht res
being the result of calling this function.
SeparableFunctions.ramp_col
— Functionramp_col([::Type{TA},] sz::NTuple{N, Int}; slope, pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}
creates an N-dimensional ramp along the gradient-direction defined by slope
. Note that this disagrees with the nomenclature of the ramp-function defined in IndexFunArrays.jl
.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col
version yields a collected array, the _lz
version a LazyArray
and the _sep
version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...)
syntax with res
being the result of the _sep
call.
Arguments
TA
: optionally an array type can be supplied. The default is Array{Float32}sz
: size of the result arraypos
: position of the gaussian in relationship to the center defined byoffset
offset
: center position of the array
slope
: a vector defining the N-dimensional gradient of the ramp.
returns the collected N-dimensional array. #Example julia> myramp = rampcol((6,5); slope=(0.0,0.5), pos=pos) 6×5 Matrix{Float32}: -1.1 -0.6 -0.1 0.4 0.9 -1.1 -0.6 -0.1 0.4 0.9 -1.1 -0.6 -0.1 0.4 0.9 -1.1 -0.6 -0.1 0.4 0.9 -1.1 -0.6 -0.1 0.4 0.9 -1.1 -0.6 -0.1 0.4 0.9 ```
SeparableFunctions.rr2_sep
— Functionrr2_sep([::Type{TA},] sz::NTuple{N, Int}; pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}
yields the absolute square of the distance to the zero-position.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col
version yields a collected array, the _lz
version a LazyArray
and the _sep
version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...)
syntax with res
being the result of the _sep
call.
Arguments
TA
: optionally an array type can be supplied. The default is Array{Float32}sz
: size of the result arraypos
: position of the gaussian in relationship to the center defined byoffset
offset
: center position of the array
returns an iterable with the one-dimensional arrays, which can be used via .+(res...)
wiht res
being the result of calling this function.
SeparableFunctions.rr2_col
— Functionrr2_col([::Type{TA},] sz::NTuple{N, Int}; pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}
yields the absolute square of the distance to the zero-position.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col
version yields a collected array, the _lz
version a LazyArray
and the _sep
version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...)
syntax with res
being the result of the _sep
call.
Arguments
TA
: optionally an array type can be supplied. The default is Array{Float32}sz
: size of the result arraypos
: position of the gaussian in relationship to the center defined byoffset
offset
: center position of the array
returns the collected N-dimensional array. #Example
julia> pos = (1.1, 0.2);
julia> my_rr2 = rr2_col((6,5); pos=pos)
6×5 Matrix{Float32}:
21.65 18.25 16.85 17.45 20.05
14.45 11.05 9.65 10.25 12.85
9.25 5.85 4.45 5.05 7.65
6.05 2.65 1.25 1.85 4.45
4.85 1.45 0.05 0.65 3.25
5.65 2.25 0.85 1.45 4.05
SeparableFunctions.box_sep
— Functionbox_sep([::Type{TA},] sz::NTuple{N, Int}; boxsize=sz./2, pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}
creates a Boolean box, being True inside and False outside. The side-length of the box can be defined via the argument boxsize
.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col
version yields a collected array, the _lz
version a LazyArray
and the _sep
version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...)
syntax with res
being the result of the _sep
call.
Arguments
TA
: optionally an array type can be supplied. The default is Array{Float32}sz
: size of the result arraypos
: position of the gaussian in relationship to the center defined byoffset
offset
: center position of the array
boxsize
: a vector defining each sidelength of the box.
returns an iterable with the one-dimensional arrays, which can be used via .*(res...)
wiht res
being the result of calling this function.
SeparableFunctions.box_col
— Functionbox_col([::Type{TA},] sz::NTuple{N, Int}; boxsize=sz./2, pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}
creates a Boolean box, being True inside and False outside. The side-length of the box can be defined via the argument boxsize
.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col
version yields a collected array, the _lz
version a LazyArray
and the _sep
version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...)
syntax with res
being the result of the _sep
call.
Arguments
TA
: optionally an array type can be supplied. The default is Array{Float32}sz
: size of the result arraypos
: position of the gaussian in relationship to the center defined byoffset
offset
: center position of the array
boxsize
: a vector defining each sidelength of the box.
returns the collected N-dimensional array. #Example
julia> pos = (1.1, 0.2);
julia> my_box = box_col((6,5); pos=pos)
6×5 BitMatrix:
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
SeparableFunctions.sinc_sep
— Functionsinc_sep([::Type{TA},] sz::NTuple{N, Int}; pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}
yields the outer product of sinc functions. This corresponds to the diffraction pattern of a rectangular aperture. Note that it is not circularly symmetric.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col
version yields a collected array, the _lz
version a LazyArray
and the _sep
version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...)
syntax with res
being the result of the _sep
call.
Arguments
TA
: optionally an array type can be supplied. The default is Array{Float32}sz
: size of the result arraypos
: position of the gaussian in relationship to the center defined byoffset
offset
: center position of the array
returns an iterable with the one-dimensional arrays, which can be used via .*(res...)
wiht res
being the result of calling this function.
SeparableFunctions.sinc_col
— Functionsinc_col([::Type{TA},] sz::NTuple{N, Int}; pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}
yields the outer product of sinc functions. This corresponds to the diffraction pattern of a rectangular aperture. Note that it is not circularly symmetric.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col
version yields a collected array, the _lz
version a LazyArray
and the _sep
version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...)
syntax with res
being the result of the _sep
call.
Arguments
TA
: optionally an array type can be supplied. The default is Array{Float32}sz
: size of the result arraypos
: position of the gaussian in relationship to the center defined byoffset
offset
: center position of the array
returns the collected N-dimensional array. #Example
julia> pos = (1.1, 0.2);
julia> my_sinc = sinc_col((6,5); pos=pos)
6×5 Matrix{Float32}:
0.0020403 -0.00374056 0.0224433 0.00561083 -0.0024937
-0.00269847 0.00494719 -0.0296831 -0.00742078 0.00329812
0.00398345 -0.00730299 0.0438179 0.0109545 -0.00486866
-0.00760477 0.0139421 -0.0836524 -0.0209131 0.00929472
0.0836524 -0.153363 0.920177 0.230044 -0.102242
0.00929472 -0.0170403 0.102242 0.0255605 -0.0113602
SeparableFunctions.exp_ikx_sep
— Functionexp_ikx_sep([::Type{TA},] sz::NTuple{N, Int}; pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}
yield an exp.(1im .* k .* Δx)
function. A scaling of one means that the shift_by
argument corresponds to Δx
in integer pixels, but the term is in Fourier space. Note that the meaning of scale
is different compared to the version in IndexFunArray.jl
. Here the default scaling of 1.0 corresponds to the default scaling of ScaFT in IndexFunArrays.jl
.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col
version yields a collected array, the _lz
version a LazyArray
and the _sep
version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...)
syntax with res
being the result of the _sep
call.
Arguments
TA
: optionally an array type can be supplied. The default is Array{Float32}sz
: size of the result arraypos
: position of the gaussian in relationship to the center defined byoffset
offset
: center position of the array
shift_by
: a vector defining the real-space shift that would be caused by this function being multiplied in Fourier-space.
returns an iterable with the one-dimensional arrays, which can be used via .*(res...)
wiht res
being the result of calling this function.
SeparableFunctions.exp_ikx_col
— Functionexp_ikx_col([::Type{TA},] sz::NTuple{N, Int}; pos=zeros(eltype(TA),N), offset=sz.÷2 .+1, scale=1.0) where {TA, N}
yield an exp.(1im .* k .* Δx)
function. A scaling of one means that the shift_by
argument corresponds to Δx
in integer pixels, but the term is in Fourier space. Note that the meaning of scale
is different compared to the version in IndexFunArray.jl
. Here the default scaling of 1.0 corresponds to the default scaling of ScaFT in IndexFunArrays.jl
.To create the array on the GPU supply for example CuArray{Float32} as the array type. Note that the _col
version yields a collected array, the _lz
version a LazyArray
and the _sep
version an iterable of one-dimensional but oriented arrays, which can be used via the .*(res...)
syntax with res
being the result of the _sep
call.
Arguments
TA
: optionally an array type can be supplied. The default is Array{Float32}sz
: size of the result arraypos
: position of the gaussian in relationship to the center defined byoffset
offset
: center position of the array
shift_by
: a vector defining the real-space shift that would be caused by this function being multiplied in Fourier-space.
returns the collected N-dimensional array. #Example
julia> pos = (1.1, 0.2);
julia> my_exp_ikx = exp_ikx_col((6,5); shift_by=(1.0,0.0), pos=pos)
6×5 Matrix{ComplexF32}:
-0.406737-0.913545im -0.406737-0.913545im -0.406737-0.913545im -0.406737-0.913545im -0.406737-0.913545im
-0.994522-0.104528im -0.994522-0.104528im -0.994522-0.104528im -0.994522-0.104528im -0.994522-0.104528im
-0.587785+0.809017im -0.587785+0.809017im -0.587785+0.809017im -0.587785+0.809017im -0.587785+0.809017im
0.406737+0.913545im 0.406737+0.913545im 0.406737+0.913545im 0.406737+0.913545im 0.406737+0.913545im
0.994522+0.104528im 0.994522+0.104528im 0.994522+0.104528im 0.994522+0.104528im 0.994522+0.104528im
0.587785-0.809017im 0.587785-0.809017im 0.587785-0.809017im 0.587785-0.809017im 0.587785-0.809017im